Minerals ~ Opals
Home ~ Menu

Photo Credit: K. Schmidt
Opal

Opal is a hydrated amorphous form of silica (SiO2·nH2O); its water content may range from 3 to 21% by weight, but is usually between 6 and 10%. Because of its amorphous character, it is classed as a mineraloid, unlike crystalline forms of silica, which are classed as minerals. It is deposited at a relatively low temperature and may occur in the fissures of almost any kind of rock, being most commonly found with limonite, sandstone, rhyolite, marl, and basalt. Opal is the national gemstone of Australia.

The internal structure of precious opal makes it diffract light; depending on the conditions in which it formed, it can take on many colors. Precious opal ranges from clear through white, gray, red, orange, yellow, green, blue, magenta, rose, pink, slate, olive, brown, and black. Of these hues, the black opals are the most rare, whereas white and greens are the most common. It varies in optical density from opaque to semitransparent.

Precious Opal

Precious opal shows a variable interplay of internal colors, and though it is a mineraloid, it has an internal structure. At microscopic scales, precious opal is composed of silica spheres some 150 to 300 nm in diameter in a hexagonal or cubic close-packed lattice. It was shown by J. V. Sanders in the mid-1960s, that these ordered silica spheres produce the internal colors by causing the interference and diffraction of light passing through the microstructure of the opal. The regularity of the sizes and the packing of these spheres determines the quality of precious opal. Where the distance between the regularly packed planes of spheres is around half the wavelength of a component of visible light, the light of that wavelength may be subject to diffraction from the grating created by the stacked planes. The colors that are observed are determined by the spacing between the planes and the orientation of planes with respect to the incident light. The process can be described by Bragg's law of diffraction.

Visible light of diffracted wavelengths cannot pass through large thicknesses of the opal. This is the basis of the optical band gap in a photonic crystal. The notion that opals are photonic crystals for visible light was expressed in 1995 by Vasily Astratov's group. In addition, microfractures may be filled with secondary silica and form thin lamellae inside the opal during solidification. The term opalescence is commonly and erroneously used to describe this unique and beautiful phenomenon, which is correctly termed play of color. Contrarily, opalescence is correctly applied to the milky, turbid appearance of common or potch opal. Potch does not show a play of color.

For gemstone use, most opal is cut and polished to form a cabochon. "Solid" opal refers to polished stones consisting wholly of precious opal. Opals too thin to produce a "solid" may be combined with other materials to form attractive gems. An opal doublet consists of a relatively thin layer of precious opal, backed by a layer of dark-colored material, most commonly ironstone, dark or black common opal (potch), onyx, or obsidian. The darker backing emphasizes the play of color, and results in a more attractive display than a lighter potch. An opal triplet is similar to a doublet, but has a third layer, a domed cap of clear quartz or plastic on the top. The cap takes a high polish and acts as a protective layer for the opal. The top layer also acts as a magnifier, to emphasize the play of color of the opal beneath, which is often of lower quality. Triplet opals therefore have a more artificial appearance, and are not classed as precious opal. Jewelry applications of precious opal can be somewhat limited by opal's sensitivity to heat due primarily to its relatively high water content and predisposition to scratching.

Combined with modern techniques of polishing, doublet opal produces a similar effect to black or boulder opal at a fraction of the price. Doublet opal also has the added benefit of having genuine opal as the top visible and touchable layer, unlike triplet opals.

Common Opal

Besides the gemstone varieties that show a play of color, the other kinds of common opal include the milk opal, milky bluish to greenish (which can sometimes be of gemstone quality); resin opal, which is honey-yellow with a resinous luster; wood opal, which is caused by the replacement of the organic material in wood with opal;[9] menilite, which is brown or grey; hyalite, a colorless glass-clear opal sometimes called Muller's glass; geyserite, also called siliceous sinter, deposited around hot springs or geysers; and diatomite or diatomaceous earth, the accumulations of diatom shells or tests.

SOURCE

Opal_001x.png
Click on Image for Listing
Finished Jewelry

Though our jewelry is in a different department, I will include gemstone specific pieces in the mineral galleries

Price: Marked with Item Description

Availability:

As we create them we will be listing them here and in our jewelry department

Opal_001x.png
Click on Image for Listing
Specimens - Rough Material

These specimens are approximately 3 to 5 inches in size on the largest side. Click on the image to see the full listing of available specimens

Price: Marked with Specimens

Availability:

Each specimen is unique so availability is by image of the piece you select. Orders are taken on a first come basis. We have many more in this size range that are not mounted. Those will be in a separate listing


Click on Image for Listing
Mineral & Gemstone Chips in Mini Bottles

These little bottles contain top quality mineral and gemstone chips from our tailings. We high grade the material. Click on the image to see the full listing of available specimens

Price: Marked under Specimens

Availability:

Mini bottles are created from left over chips from processing other mineral and gemstone specimens. We high grade the material so it is only available in limited quantities as we have available. In future we may seek to crush some material if there is sufficient interest in our bottles to warrant it.

Photo Credit: K. Schmidt

TOP

 

Webpages  © 2001-2016
Blue Knight Productions