High Energy Laser System |
|||
With Successful Test .. Team SBL-IFX, a joint-venture
comprising TRW, Lockheed Martin and Boeing, is using integrated ground
tests of the Alpha high-energy laser, its beam projection telescope and
associated beam alignment and correction system to test design concepts
for the Space-Based Laser Integrated Flight Experiment (SBL-IFX), an experimental
space-based missile defense system proposed by the Air Force and the Ballistic
Missile Defense Organization. In the photo, technicians from TRW and Lockheed
Martin check the alignment of the primary (gold) and secondary (black "can
on quadropod) optics of the beam projection telescope used in recent tests
to gather data on how best to measure and maintain the pointing of the
SBL-IFX beam director during high-energy lasing events. The telescope is
located at TRW's Capistrano Test Site in Southern California in a special
vacuum chamber that simulates the space environment. During on-orbit operations,
the SBL-IFX beam director will be used to expand, project and focus a high-energy
laser beam on a boosting missile target.
Space-Based Laser Team Advances
Design With Successful Test
Data from a recent integrated ground test of the Alpha high-energy laser, its beam director telescope and the associated beam alignment and correction system have provided the team developing the Space-Based Laser Integrated Flight Experiment (SBL-IFX) with new information about how best to monitor and maintain the pointing of the SBL-IFX beam director on orbit. The beam director is the part of the Air Force and Ballistic Missile Defense Organization's (BMDO) proposed experimental missile defense system that will project the high-energy laser beam across space and focus it on a distant boosting missile target. Team SBL-IFX, a joint venture comprising Lockheed Martin (NYSE:LMT), TRW (NYSE:TRW) and Boeing (NYSE:BA), conducted the six-second lasing test on Dec. 8 at TRW's Capistrano Test Site near San Clemente, Calif. It was performed as part of the team's current $240 million SBL-IFX development contract with the Air Force. This latest test involved generating a megawatt-class laser beam with the TRW-built Alpha, then feeding it through the Lockheed Martin-built beam control system and a 4-meter diameter beam director telescope, both of which are housed in a special vacuum chamber that simulates the space environment. The primary goal of the test was to determine if the telescope's metrology systems could maintain the pointing and proper alignment of its primary and secondary optics during a high-energy lasing event. "The test was a solid success," declared Col. Neil McCasland, director of the Air Force's SBL-IFX project office. "The laser operated nominally, the software designed to maintain the positions of the beam director optics during lasing performed as designed, and we collected a wealth of diagnostic data about the high-energy laser environment. It's all part of our ongoing strategy to use the Alpha LAMP integrated test bed to identify and rigorously test design concepts that will lead us to a successful on-orbit demonstration of the SBL-IFX." The telescope and beam alignment and correction system used during the test are both operated by Lockheed Martin. They were integrated with the Alpha laser in the early 1990s as part of the Alpha LAMP (Large Advanced Mirror Program) Integration program, one of several previous SBL technology demonstration programs. A secondary goal of the test, added McCasland, was to determine if laser characteristics such as power, beam uniformity and frequency spectrum would be adversely affected by the interaction of the laser beam with the optical systems used to correct, point and focus the beam on its target. Initial evaluation of the test data indicates that no such adverse interactions occurred. "A critical part of a successful on-orbit IFX demonstration is being able to know precisely where the beam director will direct the laser beam," explained Art Woods, Lockheed Martin's SBL program manager. "We proved with this test that the metrology systems designed to measure the alignment of the beam director telescope and the relationship between the beam director's primary and secondary mirrors can operate effectively in the presence of the high-power laser beam." Without these metrology systems, he added, the IFX laser beam could become distorted, which would degrade its strength or cause it to miss its target altogether. "The data we collected during this test will guide us in designing and producing a reliable, low-risk beam director," said Woods. The integrated Alpha/LAMP test is the latest in a series of technical risk reduction activities that Team SBL-IFX has undertaken since May 1999 to develop and mature the component technologies required to produce, integrate and perform a ground-based demonstration of a full-scale SBL-IFX integrated test unit before the end of the decade. Plans call for the SBL-IFX, a satellite carrying a high-energy laser, to be launched in 2012, with an on-orbit demonstration of its defensive capabilities against a live, boosting target planned for 2013. Team SBL-IFX comprises TRW Space & Electronics Group, Redondo Beach, Calif.; Lockheed Martin Missiles & Space Operations, Sunnyvale, Calif.; and Boeing Space & Communications Group, Seal Beach, Calif. SOURCE: Space Daily The guide beam unit of a chemical
laser ALPHA programs SBL-IFX during assembly at the company TRW (now is
part of the company Northrop Grumman). Pilot demonstration platform is
planned for launch in 2012
(Source: Matthew Moutort "revolution in military affairs and arms directed action", Air & Space Power Chronicles, March 2002) From a Russian Article Related Links:
|
|||
FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. Pegasus Research Consortium distributes this material without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107. If you wish to use copyrighted material from this site for purposes of your own that go beyond fair use, you must obtain permission from the copyright owner. | |||
|
Webpages © 2001-2016 Blue Knight Productions |