Spallation Neutron Source Target |
||||||||
From Argyll
|
||||||||
.. From ATS Thread: Can anyone identify this machinery? Posted by Argyll, on August 18, 2009 ATS Post ID 493230 Could anyone identify the machinery pictured below? Some of you will probably have seen it on another site, and I've a feeling it's a hoax, but I'd be interested to hear whAt people think it may be before I say what it's alleged to be. Thanks in advance Posted by Argyll, on August 19, 2009 ATS Post ID 6937181 Believe it or not this is purported to be a picture of the mercury coils on the looking glass system!!! Apparently the room has yellow lighting so that any leaking gas can be seen as a green vapour. As I have already stated I tend to think the picture is a hoax, but I was just interested to hear other peoples views. |
||||||||
Posted by zorgon, on August
21, 2009 ATS
Post ID 6950410
Originally
posted by Argyll
"Well since there's around 11k active users here........can anyone give a reasonable assumption to what this is?"
James Casbolt
Pegasus Document Release #003 Through the Looking Glass with Phase Conjugation
Jury is still out on this photo... |
||||||||
Posted by rwiggins, on August 22, 2009 ATS Post ID 6955628 My gut tells me that this is part of a high energy physics lab. The plumbing looks like that in high vacuum / cryo applications. Perhaps it generates a beam of neutrons? Protons? Electrons? Try asking around in some of the physics forums. I'm sure someone knows exactly what this device is. Edited to add: It may be a spallation neutron source target ref: www.csm.ornl.gov... Regardless, I think the answer is more down to earth. Like I said, asking around various physics forums or departments may lead to a definitive answer. Edit to add: Forgot to mention that the spallation neutron source target is filled with mercury!!!!! Click on the picture/diagram on the page I sourced above to see details. Edit to add (again!): I think I nailed it. Take a look at this webpage: Fourth picture down. Look familiar? Related Links:
|
||||||||
Posted by zorgon, on August
22, 2009
reply to post by rwiggins Good work That would be an affirmative. The picture earlier was taken through that greenish window perhaps. Someone needs to post that on Avalon I would but errr I ain't paying $5.00 a month to post |
||||||||
Posted by rwiggins, on August
22, 2009 ATS
Post ID 6955735
Proof positive as to identification of mystery photograph: CAPTION: The new target vessel at the Spallation Neutron Source can be seen through a window of 4-foot-thick solid glass sections. The previous vessel had been in place since 2006 and exceeded its expected lifespan.www.knoxnews.com... I did a google image search for "spallation neutron source target" and the first photograph pointed to the above link. |
||||||||
Posted by rwiggins, on August
22, 2009 ATS
Post ID 6955741
And the location of the exact photograph: Yay, mystery solved! |
||||||||
How SNS WorksReprint FromNeutron Sciences is operated by Oak Ridge National Laboratory, a national multiprogram research and development facility managed by UT-Battelle, LLC, for the U.S. Department of Energy Office of Science. Revised: Friday, March 6, 2009 12:35 PM Artists conception of SNS Negatively charged hydrogen ions are produced by an ion source. Each ion consists of a proton orbited by two electrons. The ions are injected into a linear accelerator, which accelerates them to very high energies. The ions are passed through a foil, which strips off each ion's two electrons, converting it to a proton. The protons pass into a ring where they accumulate in bunches. Each bunch of protons is released from the ring as a pulse. The high-energy proton pulses strike a heavy-metal target, which is a container of liquid mercury. Corresponding pulses of neutrons freed by the spallation process will be slowed down in a moderator and guided through beam lines to areas containing special instruments such as neutron detectors. Once there, neutrons of different energies can be used in a wide variety of experiments. The baseline design calls for an accelerator system consisting of an ion source, full-energy linear accelerator (linac), and an accumulator ring that combine to produce short, powerful pulses of protons. These proton pulses impinge onto a mercury target to produce neutrons through the spallation nuclear reaction process. At full power, SNS will deliver 1.4 million watts (1.4 MW) of beam power onto the target, and it has been designed with the flexibility to provide additional scientific output in the future. This approach is intended to provide a facility that will meet the neutron intensity needs of the science community well into the next century. Ion Source The SNS front-end system includes an ion source, beam formation and control hardware, and low-energy beam transport and acceleration systems. The ion source produces negative hydrogen (H- ) ions—hydrogen with an additional electron attached—that are formed into a pulsed beam and accelerated to an energy of 2.5 million electron volts (MeV). This beam is delivered to a large linear accelerator (linac). Linac The 1,000-foot SNS linear accelerator is made up of three different types of accelerators. It is the first of its kind used to generate a pulsed energy beam. (Click for larger view.) The linac accelerates the H- beam from 2.5 to 1000 MeV, or 1 GeV. The linac is a superposition of normal conducting and superconducting radio-frequency cavities that accelerate the beam and a magnetic lattice that provides focusing and steering. Three different types of accelerators are used. The first two, the drift-tube linac and the coupled-cavity linac, are made of copper, operate at room temperature, and accelerate the beam to about 200 MeV. The remainder of the acceleration is accomplished by superconducting niobium cavities. These cavities are cooled with liquid helium to an operating temperature of 2 K. Diagnostic elements provide information about the beam current, shape, and timing, as well as other information necessary to ensure that the beam is suitable for injection into the accumulator ring and to allow the high-power beam to be controlled safely. Accumulator Ring The SNS ring intensifies the high-speed ion beam and shoots it at the mercury target 60 times a second. (Click for larger view.) The accumulator ring structure bunches and intensifies the ion beam for delivery onto the mercury target to produce the pulsed neutron beams. The intense H- beam from the linac must be sharpened more than 1000 times to produce the extremely short, sharp bunch of neutrons needed for optimal neutron-scattering research. To accomplish this goal, the H- pulse from the linac is wrapped into the ring through a stripper foil that strips the electrons from the negatively charged hydrogen ions to produce the protons (H+ ) that circulate in the ring. Approximately 1200 turns are accumulated, and then all these protons are kicked out at once, producing a pulse less than 1 millionth of a second (10-6seconds) in duration that is delivered to the target. In this way, short, intense proton pulses are produced, stored, and extracted at a rate of 60 times a second to bombard the target. Target The curved, rectangular object is the SNS target. Inside is liquid mercury, where spallation takes place. Because of the enormous amount of energy that the short, powerful pulses of the incoming 1-GeV proton beam will deposit in the spallation target, it was decided to use a liquid mercury target rather than a solid target such as tantalum or tungsten. SNS will be the first scientific facility to use pure mercury as a target for a proton beam. Mercury was chosen for the target for several reasons: (1) it is not damaged by radiation, as are solids; (2) it has a high atomic number, making it a source of numerous neutrons (the average mercury nucleus has 120 neutrons and 80 protons); and (3), because it is liquid at room temperature, it is better able than a solid target to dissipate the large, rapid rise in temperature and withstand the shock effects arising from the rapid high-energy pulses. The neutrons coming out of the target must be turned into low-energy neutrons suitable for research—that is, they must be moderated to room temperature or colder. The neutrons emerging from the target are slowed down by passing them through cells filled with water (to produce room-temperature neutrons) or through containers of liquid hydrogen at a temperature of 20 K (to produce cold neutrons). These moderators are located above and below the target. Cold neutrons are especially useful for research on polymers and proteins. SNS is an inherently safe way to produce neutrons because the neutron production stops when the proton beam is turned off. It also produces few hazardous materials. To maximize the safety of the facility, the SNS is designed to have many levels of containment to keep potentially hazardous material from getting into the environment. Instrumentation and Experiment Facilities Schematic SNS instrument suite for showing the 18 currently planned beam lines. Final instrumentation will be determined by the user community through the SNS Instrument Oversight Committee. (Click to see a detailed view of the instruments for each beam line and the scientific areas where each instrument will be applicable.) SNS Instrument System Beam Lines The SNS instrument hall will eventually contain 24 instruments on 18 beam lines. Each SNS instrument is designed to be the best in its class and to complement the other instruments in the suite. Each instrument is expected to benefit several areas of science.The figure below shows the beam lines designated for the currently funded instruments. Roll over and click on the instrument description boxes to go to the related instrument web pages for more detailed information. Clicking anywhere else on the target building will bring up a full size PDF of this target building and beamlines layout. SNS Instrument System Beam Lines - [PDF][Archived] Exterior of the first completed SNS instrument, the backscattering spectrometer. (Click for larger view.) SNS will initially have one target station operating at a frequency of 60 Hertz (Hz). Two "thermal" moderators and two "cold" moderators will be used to service 18 beam lines, and a variety of instruments will be constructed on these beam lines. For the experiment facilities, the SNS expects 1000 to 2000 users each year from all walks of science and industry. Because not all these users will be experts in neutron scattering, the SNS will provide scientists and technicians to maintain and operate the instruments and work closely with the user community. The broad user community has been and will continue to be involved in the selection, design, construction, and operation of the instruments. The user community recommended and prioritized a suite of ten instruments for initial installation at the 60-Hz target station. Eight beam lines have been be reserved for cooperative research teams to develop and install additional instruments. Scientific Research at SNS Atomic structures are obtained by letting the full neutron spectrum from the source scatter from a crystal into a position-sensitive multidetector. The instruments at the SNS, such as neutron spectrometers, will be used to determine the positions, or arrangements, of atoms in crystals, ceramics, superconductors, and proteins. How does a neutron spectrometer work? A pulse of neutrons generated by the spallation source follows a flight path to the sample. Because the neutrons have varying energies and wavelengths, they spread out in time, presenting a continuous spectra to the sample. When the distance between atoms in a crystal matches the wavelength of an incident neutron, that neutron is scattered into a multidetector that records the position (scattering angle) and time of arrival of the scattered neutron. The result is a pattern of peaks showing the different positions and arrival times of various numbers of neutrons reaching each point in the multidetector. This pattern tells scientists how different atoms are arranged in the crystal. Instrumentation based on the same principles can be used to determine the atomic structure of glasses and complex fluids or the residual stresses in industrial parts. Instruments to measure inelastic scattering will require measurement of the time of neutron travel over paths leading to and from the sample. In this way, instruments can determine the excitation spectra of materials of importance and thus the nature of the forces that hold the atoms in place. The time-of-flight technique makes it possible to collect a large number of data points for each neutron pulse. The efficiency of instruments that measure neutron time of flight and the ability of accelerator-based spallation neutron sources to produce pulsed beams of increasing intensity promise to provide continuously improved neutron sources in the future. SOURCE PAGE: How SNS Works Neutron Sciences is operated by Oak
Ridge National Laboratory,
Revised: Friday, March 6, 2009 12:35 PM |
||||||||
FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. Pegasus Research Consortium distributes this material without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107. If you wish to use copyrighted material from this site for purposes of your own that go beyond fair use, you must obtain permission from the copyright owner. | ||||||||
|
Webpages © 2001-2016 Blue Knight Productions |