Rover Localization and Landing Site Mapping Technology
for the 2003 Mars Exploration Rover Mission

Submitted to

Journal of Photogrammetric Engineering & Remote Sensing

By

Rongxing Li and Kaichang Di
Department of Civil and Environmental Engineering and Geodetic Science
The Ohio State University
Columbus, OH 43210, USA

Larry H. Matthies
Jet Propulsion Laboratory

Raymond E. Arvidson
Department of Earth and Planetary Sciences
McDonnell Center for the Space Sciences
Washington University in St. Louis

William M. Folkner
Jet Propulsion Laboratory

Brent A. Archinal
U. S. Geological Survey

January 2003
ROVER LOCALIZATION AND LANDING SITE MAPPING TECHNOLOGY
FOR THE 2003 MARS EXPLORATION ROVER MISSION

ABSTRACT

This paper describes the technology and experiments planned for rover localization and landing site mapping in the 2003 Mars Exploration Rover (MER) mission. We introduce the Mars global and landing site local reference systems. For global rover localization in the Mars body-fixed reference system, a triangulation is performed using observations of common landmarks on orbital images and the very first set of surface images. Alternatively, UHF two-way Doppler tracking and VLBI technology can determine the location. For localization of the rover in the landing site area, onboard rover localization techniques will be performed in real-time. A visual odometry experiment will improve localization by overcoming problems associated with wheel odometry such as slippage and low accuracy. Finally, a bundle adjustment based rover localization method will build an image network acquired by Pancam, Navcam and Hazcam cameras, as well as orbital images. The developed incremental and integrated bundle adjustment models will supply improved rover locations and image orientation parameters, which are critical for the generation of high quality landing site topographic mapping products. Based on field tests performed on Earth and Mars (MPF mission data), we expect that a 1 percent or better rover localization accuracy can be achieved during this mission. In addition, the bundle adjustment results will also enable us to produce high precision landing site topographic mapping products including seamless panoramic image mosaics, DTMs, and orthophotos.
INTRODUCTION

The science objectives of the NASA (National Aeronautics and Space Administration) Mars Exploration Program focus on understanding the current and past habitability of Mars on a global scale. This means understanding the spatial and temporal patterns associated with tectonic and hydrologic cycles that have operated on and within Mars, and how these processes have modulated geochemical cycles of possible biological relevance. Measurements have been and/or will continue to be made from orbital platforms such as the Mars Global Surveyor (MGS) (NASA, 2002a), Mars Odyssey (NASA, 2002b), and 2005 Mars Reconnaissance Orbiter (NASA, 2002c). Efforts will focus, in part, on mapping in detail those locations that would be prime targets for detailed surface exploration and return sample missions. In particular, mapping would include delineation of morphology, topography, mineralogy, and elemental abundances using an array of instrumentation. Sites of interest include locations where ancient seas, lakes, or river systems are thought to have left behind a sedimentary rock record, and areas that are inferred to be extant or ancient hydrothermal zones and associated deposits. These locations would be excellent targets for rover missions that would explore laterally and make measurements that would complement orbital observations and allow testing of hypotheses developed from orbital data and other observations. The focus will be on reaching and exploring sedimentary and hydrothermal deposits since these materials may preserve evidence needed to decipher past environmental conditions. Perhaps they may even hold biosignatures.

The first mission with such a ground observation capability was the Viking Lander Mission in 1976, which acquired Martian surface images using its lander imagers (Binder et al., 1977;
Mutch et al., 1977). The Mars Pathfinder (MPF) mission sent the Sojourner rover equipped with a suite of observation tools to the Martian surface for traversing and exploring a landing site of about 10 m by 10 m in 1997 (Golombek, 1997; Golombek et al., 1999). In 2003, the Mars Exploration Rover (MER) mission will deliver two larger and better-equipped rovers to two different sites on Mars (Crisp et al., submitted; Squyres et al., submitted). The two rovers will document the geology of the landing sites and gather compositional, mineralogical, and textural information about selected Martian soils and rocks. Having far greater mobility, the MER rovers will be able to travel up to 100 meters across the surface each Martian day. The cumulative distance traversed by the rover is planned for 600m to 1,000m (NASA, 2002d).

The two MER rovers (Figure 1) are identical and each carries an identical Athena Instrument Payload and engineering cameras (Squyres et al., submitted). Table 1 lists the MER rover sensors and key parameters. We discuss the ones that are relevant to the experiments depicted in this paper. Each rover is a six-wheel drive, four-wheel steered vehicle with a rocker-bogie suspension system similar in design to the Sojourner rover. The vehicles are designed with a ground clearance of 0.3 m and the rover rocker bogie design allows the traversing of obstacles of more than a wheel diameter (25 cm) in size. Each rover carries an inertial measurement unit (IMU) that provides three-axis rate and three-axis tilt information. The rover automatically estimates its position using wheel odometry and IMU data. Among the various instruments, Pancam (Panoramic Camera) and Navcam (Navigation Camera) are the most important ones for detailed landing site mapping and rover localization. These two stereo imaging systems are mounted on the same bar of the rover mast. Pancam has a longer base of 30 cm and a longer focal length of 38 mm, making it more effective in mapping medium to far objects in the
panoramic images. The imaging areas of both Pancam and Navcam are 1,024 x 1,024 pixels. The effective depth of field for the Pancam is 3 m to infinity and the field of view (FOV) is 16 degrees. The Navcam has a focal length of 14.67 mm and an effective depth of field from 0.5 m to infinity. Its best focus is at 1 m and the FOV is 45 degrees (Table 1).

Other cameras will include the Hazcams and the Microscopic Imager (MI). The Hazcams (Hazard-avoidance Cameras) are used to determine safe egress directions for the rover and provide for onboard hazard detection using stereo data to build range maps. Two pairs of Hazcams are mounted on the front and rear end of the rovers’ warm electronics boxes below the solar panel. Each Hazcam assembly includes two cameras that form a 10 cm stereo baseline. The FOV is approximately 120 degrees and the depth of field is 0.1 m to infinity. The focal length is 5.58 mm, and the best focus is at 0.4 m. The Microscopic Imager is a 1024 x 1024 pixel imaging system mounted on an extendable arm (the Instrument Deployment Device, or IDD). It has a fixed focus design that provides a 31 x 31 mm field of view at 30 micron/pixel resolution, at a distance of 63 mm from the lens, with a depth of field of ±3 mm. It will provide extreme close-ups of rock and soil samples, which must be localized within the images of the other cameras.

Locational knowledge will be essential to the success of the 2003 MER mission, particularly to such goals as being able to define global locations of features on the ground, for example, channel deposits or volcanic vents. Such knowledge is also essential to being able to land on or adjacent to these features with some degree of precision. Precise locational knowledge will allow us to track the location of the two rovers in order to know where on Mars the observations were made and how they fit within sequences of observations acquired from an orbital perspective. To that end, the expectation is that the Mars Exploration rovers will use two-way radio tracking
in order to define their location. It will also be important to be able to define the location of the
landing site relative to terrain features observed in orbital images that have been taken by the
Viking, MGS Mars Orbiter Camera (MOC), and Odyssey THEMIS imaging systems. This will
be accomplished by cross-correlating features observed on ground images acquired from the
rovers with features observed in the orbital images. Furthermore, we will need to determine
where the rover has been as measured in local Cartesian coordinates by cross-correlating features
observed in overlapping rover images. This information will be coupled with locational
information derived from the orbital images and the result will then be transformed into the
global coordinate system. The overall key will be to be able to relate observations from orbit
with those from the rovers in order to be able to test and update hypotheses related to planetary
habitability. Locational knowledge is a crucial link in relating the sets of observations.

The onboard navigation system consists mainly of an IMU, an odometer, and solar imaging
cameras. The nominal rover localization error of this system is 10 percent. As planned for the
MER mission, this may result in an error of 100 m accumulated over a traverse of 1,000 m. Thus,
mapping products derived from the rover images could contain large errors. If not dealt with
appropriately, these errors would significantly affect landing site operations when the rovers
traverse areas farther away from the landing center. The localization experiments of the MER
mission will include global localization by matching common features in orbital and surface
images and radio tracking. Local rover localization on the landing site will be based on the on
board navigation sensors. However, improvement of the localization is expected by using an
image-based rover localization approach that uses a network of surface and orbital images along
with bundle adjustment techniques. This will not only enhance the localization accuracy, but also the topographic mapping quality.

REFERENCE SYSTEMS

Mars Global Reference System

In this section, we discuss primarily two Mars-centered coordinate systems. One is an inertial system, which, for example, can be used to determine orbiting spacecraft coordinates. The other is a body-fixed system, which determines coordinates of surface features, landers, and rovers. The connection between the two systems defines the “rotation” of Mars.

Inertial Reference System

The Mars inertial reference system is derived entirely from spacecraft tracking of Mars orbiting spacecraft. Its origin is the center of mass of Mars, as it has been determined from such spacecraft tracking. Its orientation is that of the International Celestial Reference System, defined in practice by the coordinates of distant radio sources (e.g. quasars) that make up the International Celestial Reference Frame, or ICRF (Ma et al., 1998). Since the same radio telescopes that are used for spacecraft tracking can also observe these (or related) ICRF radio sources, spacecraft coordinates can be quite accurately located in this frame.

Mars Body-Fixed Reference System

The Mars body-fixed reference system is defined essentially by the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites in their most recent report (Seidelmann et al., 2002). Two types of Mars fixed coordinate systems are
allowed: a) a spherical coordinate system using latitude (called planetocentric, or areocentric) and longitude measured toward the east, and b) an ellipsoidal coordinate system using planetographic latitude and longitude measured toward the west. In the latter system, the latitude is measured as the angle between the equatorial plane and the normal to the ellipsoidal reference surface at a given point. In either system, the rotational pole of Mars on the north side of the invariable plane of the solar system specifies the north direction and northern latitudes are measured as positive. Longitudes range from 0 to 360 degrees. The origin for longitude on Mars is the center of the small crater Airy-0 with a diameter of about 500 m (de Vaucouleurs et al., 1973). These specifications also imply that the geometrical center of either the spherical or the ellipsoidal system is the center of mass of Mars (as in the Mars inertial system).

Historically, the planetographic latitude and west longitude have most often been used in making maps of Mars. However, the Mars Orbiter Laser Altimeter (MOLA) Science Team adopted the use of planetocentric latitude and east longitude for their operational work and products. Due partly to the importance of these products and their recent widespread use (Duxbury et al., 2002), the latter method of defining coordinates has come into widespread use. The MER mission has adopted the use of this system (Duxbury et al., 2002) as has the Odyssey and Mars Reconnaissance Orbiter Missions.

Although not specifically discussed by the IAU/IAG Working Group, it is assumed that in order to truly specify the coordinates of a feature on Mars in three dimensions, the planetary radius (e.g., in km or m) of that feature must be specified along with its planetocentric latitude and east longitude. Furthermore, coordinates in such a Mars body-fixed reference system may easily be
converted to Cartesian coordinates. When expressed in these coordinates and with an origin at the Mars center of mass, the X-axis is then in the direction of the intersection of the Prime Meridian (which passes through the center of Airy-0) and in the equatorial plane, the Z-axis is in the direction of the north pole, and the Y-axis forms a right-hand system with the other axes. Such a system obviously lends itself to various calculations and, in fact, it is in common use.

Rotation

As previously explained, the difference between the Mars inertial reference system and the body-fixed reference system is the “rotation,” or orientation, of Mars. According to the IAU/IAG Working Group, it is defined by specifying that the north pole of the rotation axis of the Mars body-fixed reference system points to right ascension (α) and declination (δ):

\[
\alpha = 317.68143^\circ - 0.1061^\circ/\text{century } T \quad \text{and} \quad \delta = 52.88650^\circ - 0.0609^\circ/\text{century } T,
\]

of the ICRF, where T is the interval in Julian centuries (of 36525 days) from the standard epoch, i.e. $T_{2000.0} = 2000$ January 1.5 TDB. The orientation of Mars on its axis is defined by: $W = W_0 + 350.89198226^\circ/\text{day } d$, where W is the angle measured along the equator from the equator’s intersection with the celestial equator to the Prime Meridian and d is the interval in days from the standard epoch. The fixed term W_0 is 176.630° and was recently redetermined by comparing MOLA-derived coordinates and digital image models with Viking and Mars Orbiter Camera (MOC) images of the Airy-0 crater. This work was undertaken by the NASA Mars Geodesy and Cartography Working Group and is reported in (Duxbury et al. 2002). This new value was derived with an absolute accuracy of about ±250 m and has been adopted by the IAU/IAG working group along with a new determination for Mars’s spin rate from (Folkner et al. 1997), leading to the resulting equation for W. From radio tracking of the Viking and Mars Pathfinder landers, Mars is actually known to
have slight variations in its orientation from these values (Folkner et al., 1997). However, they have not yet been measured (or at least modeled) at a level accurate enough to allow for their prediction.

Elevation

The “height” of features on Mars can be expressed as a radius, i.e. the distance of a feature to the Mars center of mass. For many purposes, it is also useful to specify the “elevation” of a given feature, such as some measure of the gravity potential at that feature relative to some standard average gravity potential for the surface of Mars. The surface having this standard gravity potential is known as the areoid, or Martian gravitational equipotential surface. In the past, definitions of the areoid and elevations on Mars were based on such data as radar and radio occultation measurements of Martian radii and stereo-derived height information as defined through work at USGS (Wu, 1975) and elsewhere (see Smith et al., 2001, p. 23690 for a brief review). With accuracies commonly at the ±1 km level, these types of height measurements are now of historical information only, having been completely superseded by results from the MGS Mars Orbiter Laser Altimeter (MOLA) measurements. The MOLA measurements now define the topographic surface on Mars with an accuracy (in radius) at the 10-m level, a precision at the 1-m level, and a horizontal accuracy at the 100-m level (Neumann et al., 2001). In addition, precise tracking of the MGS spacecraft carrying the MOLA instrument has allowed the gravity field of Mars to be determined at a level where the predicted error in areoidal heights ranges from 1.0 - 2.6 m, with a global RMS of 1.8 m (Lemoine et al., 2001) and maximum uncertainties of about 10-20 m (G. Neumann, MGCWG meeting of August 27, 2002). The areoid on Mars has been defined (Smith et al., 2001, p. 23696) as the equipotential surface (of gravity, equal to
gravitational plus rotational) whose average value at the equator is equal to the mean radius at the equator (or 3396.000 km as determined by MOLA). From the above-mentioned specifications and knowledge of the gravity field (Lemoine et al., 2001), the elevation of all points on Mars can be computed. From the topographic information of the areoid at the level of precision cited above, the elevation will therefore have nearly the same 10-m absolute precision. This means that once the planetocentric latitude and east longitude of any surface feature or rover position are determined, a MOLA digital terrain model (DTM) for topography, expressed either as radius or elevation, can be interpolated to give those values. Since the MOLA data itself has an absolute horizontal uncertainty of ±100 m, and since there will always be some additional uncertainty in determining the coordinates of any feature or rover position, the absolute accuracy of these values will be at least 10 m in areas of rough terrain or steep slopes. However, for the rovers, which are expected to land on relatively flat terrain, these values can be expected to be accurate to this level and to have precisions (e.g., for relative determination of elevation between nearby locations) even higher than this, perhaps to the level of the ±1 m precision of the MOLA topographic model. Currently the MOLA science team is preparing a final version of the MOLA topographic model (in both radius and gravity field solutions) and of the derived topographic model in elevation. It is expected that this work will be completed well before the arrival of the MER spacecraft at Mars and that, after some appropriate verification, the MGCWG and MER missions will designate these as standard models. Thus those solutions can be used as definitive values for the MER mission and for missions for many years into the future (until data can be obtained similar in quantity and accuracy to that obtained by the MOLA experiment).
Landing Site Local Reference System

There are several local coordinate systems defined for the spacecraft and rovers for various purposes. For the planned experiments in this paper, the Surface Fixed Coordinate System (S frame) is particularly useful. Its origin is fixed to the spacecraft. The X axis points to the north pole and the Z axis points down in the normal direction of the Martian ellipsoid. The Y axis is defined such that the coordinate system is a right-handed system. The rover IMU and the Sun observations can determine the relationship between the S frame and the Mars Body-fixed Reference System. Once the parameters of the S frame are computed, they remain unchanged in the operations in order to achieve consistency, while new site specific coordinate systems can be defined to support operations related to each site where the rover will operate. Our computations will be performed in the S frame. However, similar to the MPF mission, we will generate topographic mapping products in a Landing Site Cartographic (LSC) coordinate system that is an east-north-up (X-Y-Z) right-handed local system (R. Kirk, personal communications, 2002). The conversion between the S frame and the LSC is a set of straightforward axis rotations. Mapping products in LSC system are intuitive for interpretation and visualization.

GLOBAL LOCALIZATION

Rover Localization in Orbital Imagery by Triangulation

Prior to landing, the best orbital images of the landing sites will have been collected from a sequence of imaging systems including Viking, MOC narrow angle (NA), THEMIS infrared (IRS) and visual (VIS), and possibly Mars Express High Resolution Stereo Cameras (HRSC). These will have been assembled as appropriate into mosaics. The individual images and mosaics will be registered to MOLA DIMs, which is described in the next section, and the coordinates in
planetocentric latitude and east longitude of any feature visible in the images or mosaics can be estimated. The absolute accuracy of these coordinates is close to the ±100 m horizontal accuracy of the MOLA DIMs (depending on how good the tie to MOLA is). The level of precision relative to nearby features is higher (depending on the resolution and quality of the individual images or mosaics). These coordinates can also be used to estimate a radius or elevation for the feature in the MOLA DIM.

Within the first few sols, a complete panorama and other individual surface images may be taken by Pancam and/or Navcam. Some distinguished landmarks of the landing site such as craters and mountain peaks will be captured by Pancam and Navcam, and may appear in the orbital images. Using the telemetry data associated with the surface imagery and the locations of the identified landmarks in both orbital and surface images, the rover location can be triangulated in an orbital image or mosaic such as MOLA DIM. Then its location can be transferred to any appropriate images or mosaic. The derived three-dimensional coordinates can also be assumed as initial coordinates, for example, of the S frame.

Coordinates Derived from Digital Image Models

The most straightforward way to determine the coordinates of a surface feature on Mars (or a location derivable from nearby surface features) is to locate the feature on a Digital Image Model (DIM) of Mars using the positional information inherent in the DIM to obtain the coordinates. The USGS MDIMs (MDIM 1, color MDIM, and MDIM 2.0) (USGS, 1991; Batson and Eliason, 1995; Kirk et al., 1999, 2000) have often been used in the past for this purpose. Due to various problems errors of up to several km in both latitude and longitude are common in these image
models, and there are errors in longitude of 10-20 km on a global average. These MDIMs are now being superseded by higher level MDIMs currently under development.

The MOLA topographic models (DTMs expressed as a planetocentric latitude and east longitude grid of planetary radii or elevations) may be expressed as DIMs either by creating an image color coded by height, or more suitably by illuminating the DTMs. Since the MOLA data has been adjusted in an inertial system and (now) oriented using the newly determined value of \(W_0 \), coordinates determined from this data are at the highest possible level of accuracy. The primary limitation of such DIMs, however, is that the horizontal resolution of the MOLA data is limited. The footprint diameter is 168 meters, the footprint spacing along track is about 300 m, and there is about 1 - 2 km between tracks with gaps of up to 12 km at the equator (Neumann et al., 2001). Therefore, in order to determine absolute coordinates of features it is necessary either to refer to MDIMs based on the MOLA system, or to match single images or local mosaics of higher resolution images to the MOLA DIMs.

Preliminary MOLA DTMs (expressed in radii, usually with an offset value removed, or in elevation, with resolutions as fine as \(1/128^\circ \) horizontally) are currently available from the MOLA Science Team’s Internet site found at http://ltpwww.gsfc.nasa.gov/tharsis/mapping_data.html where filenames containing “MEG” are in the current IAU/IAG system (Seidelmann et al., 2002). It should be noted the gridded MOLA DTMs have a uniform resolution that is lower than the MOLA footprint spacing along tracks, but higher across tracks. However, the gridded DTMs are more effective in computations. In addition, T. Duxbury (personal communication, 2002) has provided high-resolution DIMs of MOLA data at each of the proposed MER landing sites.
These DIMs are currently available at ftp://naif.jpl.nasa.gov/pub/cartography/MER. Once the MOLA Science Team has completed MOLA data processing, these products will be updated to final versions that should be used for MER operational work. The primary MOLA products have been archived to the Planetary Data System (PDS) and are available at: http://wufs.wustl.edu/missions/mgs/mola/.

Additional USGS MDIMs tied to the MOLA system are in the preparation stage. These may also soon be used to obtain feature coordinates at horizontal accuracy close to that of the MOLA system, even for small features not resolved on MOLA DIMs. MDIM 2.1 (Kirk et al., 1999, 2000) is being created by measuring tie points between Viking images and high-resolution, illuminated MOLA DIMs and then performing a new control solution of the Viking images with fixed coordinates for the MOLA tie points (Archinal et al., 2002). This mosaic will be created by properly projecting the Viking images onto a (MOLA) topographic surface. It is assumed that the expected accuracy will be on the order of 250 m in the horizontal position, based on the MOLA accuracy in position (~100 m) and the ability to tie the MOLA images to those Viking images to be used in the MDIM.

Mosaics using MOC wide angle (WA) images are also in preparation. At Malin Space Science Systems, a mosaic has been created using the “Geodesy Campaign” images (Caplinger and Malin, 2001; see also http://www.msss.com/mars_images/moc/moc_atlas/). For this mosaic, no formal control solution was performed. Instead, the measured camera pointing angles were assumed to be correct and used to “control” the orientation of the images. Experience at USGS has shown that this pointing information is accurate, relative to MOLA-based coordinates, at
approximately the 1-pixel level (where 1 pixel = ~230 m based on the resolution of the MOC WA camera). MDIM 3.0 is also in preparation at USGS using MGS WA images (Kirk et al., 1999). For this mosaic, it is planned to further “control” the orientation of the images by using MOLA data. This will be accomplished by incorporating pointing offsets derived from the crossover adjustment of the MOLA data, evaluated at the times of image acquisition.

Therefore, in order to determine the horizontal coordinates (planetocentric latitude and east longitude) of a surface feature at the highest level of accuracy, one must either locate it on a MOLA DIM or locate it on an image from orbit (e.g., Viking, MOC, THEMIS, HRSC image) that is either tied to a MOLA DIM or part of a local or regional mosaic of images that is tied to a MOLA DIM. Coordinates of such features with fairly high accuracy (at the few hundred meter level in the horizontal) could alternately be obtained from MDIM 2.1 or MDIM 3.0. However, if images with higher resolution than those used in the MDIMs of the features are available (as is the case for the MER landing sites), the measurement of such features should be possible at a higher level of accuracy by doing a direct match of such images with a MOLA DIM. The absolute accuracy of any coordinates will be based on the inherent accuracy of the MOLA system (~100 m in the horizontal) and the accuracy with which individual images can be tied to a MOLA DIM. This later accuracy will depend primarily on how many features in the individual image in question can be matched with a MOLA DIM. For high-resolution images (e.g., MOC NA), there may not be sufficient features present in an individual image to provide a satisfactory match or number of matches with features in a MOLA DIM. It then would be advisable to create a controlled mosaic of images (orthorectified to a MOLA DTM in order to avoid any parallax problems with oblique images), bridging the difference in resolution and area coverage of the
high-resolution image(s) to the lower resolution of the MOLA DIM. The final accuracy will depend on the accuracy of the control network used to create the mosaic (how well the images of the mosaic are tied together) and on the number of tie points to the MOLA DIM (where the accuracy will improve with the square root of n, to the limit of the MOLA accuracy of ~100 m).

The situation for determining the radius or elevation of a surface feature is completely analogous. The feature must be located either on a MOLA DIM, or on an image or mosaic of images that can be tied to a MOLA DIM. If a mosaic of stereo images is available in the area in question, it may also be possible to establish the elevation of a feature with more precision (e.g. relative to nearby features) than that derived from a MOLA DIM. However, stereo data will not allow for any absolute improvement in the elevation (except perhaps at some minimal level by allowing for improved matching of features between the mosaic and MOLA DIM).

Rover Localization Through UHF Two-Way Doppler Tracking and VLBI

The position of the MER rovers can be determined from measurements based on their radio systems. Each rover carries two radio systems. One system is used to communicate directly with Earth tracking stations, and one is used to communicate with spacecraft orbiting Mars, including MGS and Odyssey. These spacecraft in turn relay the rover telemetry to Earth. Both radio systems allow for accurate measurement of the Doppler shift of the radio signal, from which the position of the rovers can be inferred. The radio system in communication with Earth also allows for the measurement of the range between the rovers and the Earth tracking station. From these radio measurements, the position of the rovers can be determined in either the Mars inertial or body-fixed reference system within an accuracy of 1-10 m, where a transformation from one
system to the other may be necessary. The Mars surface features are usually measured using the imagery and have a lower global accuracy.

For communications with Earth, the rovers include an X-band radio system that receives signals sent from Earth tracking stations at a frequency of 7.2 GHz and transmits to Earth at 8.4 GHz. Earth tracking stations measure the frequency of the radio signal received from the rovers as a measure of their relative velocity with respect to Earth. In a simple one-way Doppler measurement (where the rover transmits and the Earth tracking station receives), the Doppler measurement accuracy is limited by the frequency stability of the reference oscillator on the rover, which is usually rather poor compared to the atomic frequency standards used in Earth tracking stations. In order to achieve high-quality Doppler measurements without requiring an atomic frequency standard on the rovers, the rover radio system is capable of operating in a mode where the frequency of the signal transmitted by the rover is made to be a fixed multiple of the frequency it receives from the Earth tracking station (coherent mode). In this case, the measurement of the frequency shift made by the Earth tracking station is proportional to twice the line-of-sight velocity, with a Doppler shift occurring on both the Earth-to-rover signal and on the rover-to-Earth signal. The accuracy of such measurements is generally limited by dispersion introduced by electrons in the interplanetary medium (also referred to as solar plasma). A typical frequency measurement accuracy is \(\sim 5 \text{ mHz} \), corresponding to a line-of-sight velocity accuracy of about 0.1 mm/s over a measurement integration time of 60 seconds (Thornton and Border, 2000).

The rover-to-Earth Doppler measurements have a time-dependence due to the rotation of Mars
about its axis. Measurements over a single tracking pass (view period) have a sinusoidal signature, which can be used to solve for two components of the rover position: its longitude and its distance from the Mars spin axis (Hamilton and Melbourne, 1966; Curkendall and McReynolds, 1969). As reported for the Viking and Mars Pathfinder landers (Folkner et al., 1997), the Doppler measurement accuracy is sufficient to determine these components with an accuracy of about 1 m.

The third component of rover position, distance from the Mars equatorial plane, can be determined from variations in Doppler signature over multiple view periods, since the relative motion of Earth and Mars cause slight differences in signature due to Mars rotation from day to day. The accuracy with which this can be determined is quite poor over a short time period (a few months or less) since day-to-day orbital changes are fairly small. The third component of position can instead be determined by using a measurement of round-trip light time (or range) in addition to the Doppler measurements. The range measurements are made by modulating a signal onto radio carrier frequency at the Earth tracking station and measuring the time between time of transmission and time of reception of the modulation via the rover. Range measurements are made at NASA’s Deep Space Network with a typical accuracy of ~1 m. Because ranging measurements require that the rover modulate the radio signal, they can detract from transmission of telemetry (which also modulates the radio signal) and therefore are typically not available as frequently as are Doppler measurements.

The range measurements can be used in combination with Doppler measurements to determine all three components of the rover position. The third rover position component is not determined
with meter-level accuracy because the range measurements depend on both the distance of the rover from the Mars equator and the distance from the center of Mars to the Earth tracking station. At the time of the Mars Pathfinder mission, the Earth-Mars distance was known within an accuracy of ~30 m, so the distance of the rover from the Mars equator was determined within an accuracy of ~80 m (Folkner et al., 1997). Subsequently, knowledge of the Earth-Mars distance has been improved by about a factor of two by using a series of ranging measurements to Mars Global Surveyor and Mars Odyssey. Therefore, the MER Rover position would be expected to have an accuracy of ~40 m. Because the error in the Earth-Mars distance is nearly constant over a few sols, the range measurements can determine changes in the rover position from one sol to the next with an accuracy of ~3 m.

Due to the large distance from Mars to Earth as well as the limited antenna size and power available to the rovers, the rovers will have a radio system for transmitting data to spacecraft orbiting Mars. Because the orbiters generally have larger antennas and more power available, they can relay a much larger amount of data to Earth than could the rover if transmitting directly to Earth. The local radio signal is at UHF frequencies, with the rovers transmitting to the orbiters at 401 MHz and the orbiters transmitting to the rovers at 435 MHz. As with the X-band radio system, the rovers are capable of operating in a coherent mode with the transmitted signal referenced to the signal received by the orbiter. The Mars Odyssey orbiter uses a simple system to measure the frequency of the signal received from the rovers compared with the transmitted signal. The accuracy of the measurement is expected to be about 20 mHz, corresponding to a line-of-sight velocity accuracy of about 10 mm/s.
For each view period between the rover and the orbiter, the Doppler shift has a signature due to the relative motion between them. The signature is somewhat similar to the signature on rover-Earth signals, but with a characteristic period given by the orbiter period rather than the Mars day. The signature allows for determination of two components of the location of the rover within a single view period. Unlike the case with Earth observations, the rover-orbiter geometry changes greatly between view periods, so two consecutive tracking passes are sufficient to completely determine the rover position (assuming the rover has not moved between view periods). The rover position is determined with respect to the orbiter’s position, which is typically known within an accuracy of ~10 m through tracking of the orbiter radio signal by Earth tracking stations. The expected position determination accuracy is about 50 m (Guinn, 2001).

The rover positions determined using radio tracking are accurately measured with respect to the ICRF, which is determined by the location of extra-galactic radio sources and to which the positions of Earth tracking stations are referenced using Very Long Baseline Interferometry measurements. Planetocentric latitude and east longitude values of the rover locations will be provided in order to tie the rover locations by the radio position determination to the orbital and surface images.

ROVER LOCALIZATION WITHIN THE LANDING SITE

Before landing, planimetric mapping of the potential and final landing sites is performed by using orbital data such as MOLA altimetric data and images of Viking, MOC, and THEMIS
imaging systems. The first set of Pancam and/or Navcam images after landing may reveal some landmarks that can be matched with those on the orbital images. Triangulations of the matched landmarks allows for the determination of the first rover location in the global Mars body-fixed coordinate system. Independent of the success of the landmark matching technique, within three sols after landing UHF Doppler tracking will provide rover locations in the same global coordinate system at an accuracy of 30 m.

The orientation of the landing site Surface Fixed Coordinate System (S frame) can be determined by the observations of the IMU and Sun observing images within the very first few sols. Images of the Pancam target and its gnomon can also be used to verify the determined orientation. Its initial origin may be determined by the above-discussed two global localization methods using radio science team observations, orbital images, and surface images collected. Although the quality of the S frame can be improved as more orbital and surface images become available, it is critical that the initially determined S frame remains consistent so that observations and computational results based on smaller areas of the landing region can be referenced to each other.

MER Onboard Rover Localization

Onboard rover position estimation for MER is done by the Surface Attitude, Position, and Pointing module (SAPP). This module is responsible for position and attitude acquisition and propagation during the rover traverse. Position acquisition is done simply by uplink from Earth. Attitude acquisition uses onboard accelerometers to estimate rover tilt, and then uses the Pancam to find the sun. Knowledge of time and tilt are used to control the Pancam in a circular search for the sun; if this fails then the whole hemisphere is searched. The attitude estimate resulting from
this procedure is too coarse for pointing the high gain antenna (HGA), so a more accurate “sun gaze mode” is used to obtain a finer estimate for HGA pointing. In this mode, the Pancam sits still and watches the sun move across the sky for a period of about 15 minutes; the resulting observed arc produces an adequate refinement of the attitude.

Attitude propagation is done differently for nominal versus off-nominal conditions. In the nominal case, the IMU works and attitude propagation is done entirely with the IMU. The off-nominal case uses wheel odometry to propagate attitude if there is a problem with the IMU. This case updates only the rover heading, not its tilt.

Position propagation uses two different methods for the two extreme cases of nearly straight-line driving and tight turns; a weighted combination of the two methods is used for intermediate cases. In the nearly straight-line case, the method is based entirely on wheel odometry. The arc length traveled by each wheel is estimated from the wheel radius, and the wheel rotation is measured by encoders. The arc length and the steering radius for each wheel are used to estimate a turning angle for each wheel; the average over all six wheels produces a turning angle estimate for the whole rover. Basic trigonometry then gives the change in position for the rover. In the off-nominal case for attitude propagation, this also gives the change in heading for the rover. This procedure is singular when the rover is driving very nearly straight ahead; in this case, measured rotation at each wheel is used to get a displacement, and the average over all wheels produces the rover displacement. In tight turns, the gyro is used to estimate the turning angle estimate for the rover instead. There is no estimation of wheel slippage.
Both attitude and position are updated at 8 Hz while the rover is in motion. For position acquisition, a new “site frame” is defined from Earth every time a new image panorama is taken. The ground system keeps track of transformations between site frames. Science operations are commanded in the site frames. The attitude estimate has several “grades”. If the grade is not “fine” before an HGA direct-to-Earth transmission, the communication behavior requests reacquisition with the sun gaze mode.

The onboard localization technique provides rover locations during each sol. Updates from the ground system supply more accurate rover locations through uplinks from Earth to the rovers. Experiments of visual odometry and surface image based bundle adjustment aim to enhance the accuracy of both onboard localization and uplinked rover locations during the mission.

Visual Odometry

“Visual odometry” algorithms for using stereo cameras to estimate mobile robot motion were originally developed in Matthies (1989). Following this work, some minor variations and modifications were suggested for improving its robustness and accuracy (Olson et al., 2000, 2001). The key idea of this method is to determine the change in position and attitude of the rover between consecutive image pairs acquired as the rover moves, using maximum likelihood estimation to track point features between the images. The developed method was successfully tested at JPL and will be applied during the MER mission as a complementary experiment to the bundle adjustment method.

First, features that can be easily matched in a stereo image pair and tracked over time are
selected by applying an “interest operator” to one of the images. Pixels with high interest values are selected, subject to a constraint on the minimum distance between features that ensures that features are selected evenly across the image. Next, stereo matching is used to determine the 3-D positions of the selected features.

After the rover moves a certain distance, the next pair of stereo images is acquired. The features selected from the previous pair can be projected onto one image of the new pair using prior knowledge of the approximate motion provided by the onboard wheel odometry. Then a correlation-based search and an affine template-tracking algorithm precisely determine the 2-D positions of these features in the new image. The affine template tracking aims to remove the tracking error caused by large roll and scale change between images. In this case, the relationship between two images within the template is expressed as an affine transform

\[x_2 = ax_1 + by_1 + c \quad y_2 = dx_1 + ey_1 + f \]

where \([a, b, c, d, e, f]\) are the unknown coefficients of the affine transform, which can be determined by iteratively minimizing the merit function (Szeliski, 1996)

\[M = \sum [I(x_1, y_1) - I(x_2, y_2)]^2 = \min \]

Stereo matching is then performed to find these tracked features in the second image of the new stereo pair to determine their 3-D positions relative to the new rover location. The rover motion between image pairs is estimated from the homogeneous transformation

\[Q_{cj} = RQ_{pj} + T + e_j \]

where \(R\) and \(T\) are the rotation and translation of the robot, \(Q_{pj}\) and \(Q_{cj}\) are the positions of the observed features before and after a robot motion, and \(e_j\) is the combined error in the observed positions of \(j\)th features. The variable \(e\) is modeled as a 3-D Gaussian distribution by error
propagation from the stereo triangulations that produced the estimates of Q_{pj} and Q_{cj}. The three rotation angles and the translation vector T are estimated by minimizing the summation $\sum r_j^T W_j r_j = \min$, where $r_j = Q_{cj} - RJ_{pj} - T$ and W_j is the inverse covariance matrix of e_j. Minimization of the nonlinear problem is done by linearization and iteration (Matthies, 1989).

Visual odometry has been tested on the JPL FIDO rover (Schenker et al., 2001). FIDO has two pairs of hazard avoidance stereo cameras mounted on the front and rear of the rover body about 50 cm above the ground. For each camera pair, image resolution is 640 x 480 pixels, the field of view (FOV) is 112° horizontal by 84° vertical, and the baseline is about 12 cm. The test site is a rugged, dry riverbed in the Arroyo Seco adjacent to JPL (Figure 2). FIDO experienced a lot of slip, tilting, and rolling during a test traverse that covered approximately 8 m. Images were acquired about every 20 cm of the traverse.

In order to evaluate the performance of visual odometry, high precision ground-truth data was collected with a total station survey instrument. By tracking a prism on the top of a rotating fixture, the rover’s position and attitude were measured to within 3 mm in position and 0.1° in attitude. The absolute position errors at the end of this run were 2.0, 5.3 and 10.1 cm in the x, y, and z directions respectively (forward, lateral, and vertical). The rotation error is less than 1.0° in general. Figures 3 and 4 show the results of this test run. While these results are quite accurate in themselves, we note that the errors in y and z are systematic and are correlated with the pitch and azimuth errors; hence, we think this represents calibration error between the cameras and the rover body frame, which we expect can be improved. We are in the process of evaluating
performance over a longer image sequence covering 60 m of travel in the JPL Mars Yard.

Rover Localization Through Bundle Adjustment of an Integrated Image Network

The bundle adjustment method for rover localization takes a global approach by building an image network of the landing site. Starting at sol 1 after landing, the accumulated Pancam and Navcam images will be used to progressively build up an image network as the rover traverses the landing site (Figure 4). Hazcam images may be used wherever necessary to bridge the gaps in the network. Tie points that are image features appearing in the same stereo and cross-stereo image pairs of the Pancam, Navcam and Hazcam images will be selected either automatically or manually. These tie points create a geometric configuration of the images that strengthen the geometry of the image network. The image network will expand, as more surface images are acquired sol by sol.

The initial location and heading information of each rover will be provided by the telemetry data acquired by onboard sensors. Information about the position and pointing angles of each image, also called exterior orientation (EO) parameters, can also be derived. The bundle adjustment system uses the above image network to compute the refined EO parameters of all images. Since the EO parameters are estimated within the entire image network, the images are georeferenced to a high accuracy across the entire area. This is especially important for images farther away from the landing site. After the bundle adjustment, the refined EO data and Pancam and Navcam images will be employed for the generation of mapping products of the landing site, including panoramic image maps, DTM, and orthophotos.
For any image added into the image network, the bundle adjustment system can provide the camera position at the time of imaging. If locations of other rover parts are needed, the precise location representing the rover position can also be estimated with the help of the rover calibration data (camera baseline, mast height, etc.). This bundle adjustment-based method will significantly improve rover localization capability.

We will attempt to link the MOLA altimetric data and the orbital images (including Viking, MOC NA, and THEMIS images) with the surface-based rover images in the same image network.

Building the Image Network

The image network consists of surface images acquired by the Pancam, Navcam and Hazcam cameras. There should be sufficient areas of overlap between the images within stereo pairs (intra-stereo) of panoramas (Figure 5). An overlap of at least 10 percent should be maintained to facilitate the connections between adjacent stereo pairs (inter-stereo). In addition, forward- and backward-looking images are required to link the panoramas if the distances between them are significant.

The selection of tie points in image margins and overlapping areas, especially in the forward and backward images (viewing from opposite directions), is a highly challenging task. We have developed a method that can automatically designate distinct points from features such as big rocks as so-called interesting points using an interesting operator such as a Förstner operator.
(Förstner and Guelch 1987). Usually, there are a large number of detected interesting points. We define as candidates for the tie points those interesting points that have distinct brightness and texture. Next, image-matching techniques are employed to find the conjugate candidates of the tie points in the stereo images. The searching for matched features is constrained within a small area based on the epipolar geometry using the initial EO data. The final matched candidates are considered as the tie points. To improve the computational efficiency and to achieve an even distribution of tie points, each image is subdivided into a 3×3 or 5×5 grid. The tie point that has the highest correlation coefficient is selected within each grid. Our experiment showed that the above automatic tie-point selection techniques are capable of automatically selecting the majority of the tie points needed, with the remainder being chosen manually.

Bundle Adjustment

Once the S Frame is determined, the rover uses its onboard algorithms for localization and navigation. For each image there is position and orientation information included in the rover telemetry file. The surface rover image network will be built progressively, and the bundle adjustment is conducted in an incremental manner. First, a 360° panorama of Pancam/Navcam stereo images acquired in the initial sols will be tied together to form a circular image network. This early image network will expand sol to sol as the rover collects additional images. In order to process the images and to support science and engineering operations in a timely manner, an incremental bundle adjustment will be performed for a small number of the most recently returned images (e.g., within one sol) based on the previous network adjustment result. Every few sols there will be an integrated bundle adjustment for the entire network consisting of all images collected at the landing site. This network is adjusted globally and is expected to produce the best bundle adjustment result (Li et al., 2002).
An error propagation model will be developed and applied. In this model, errors in observations are described as a covariance matrix and are propagated through matrices representing the geometric configuration of the image network. The output of the error propagation is a covariance matrix of all estimated unknowns in the adjustment, including tie point position and camera orientation parameters. Accordingly, errors of individual parameters and their correlations are depicted in relevant submatrices of the covariance matrix as variances and covariances. Thus, errors of a point are given by a 3x3 covariance submatrix, from which an error ellipsoid can be derived. The error ellipsoid reveals not only error magnitudes by its three principal axes, but also its orientation. Similarly, errors associated with camera positions and orientations can also be extracted from the covariance matrix. This will provide a quality index for the subsequent photogrammetric measurements and landing site mapping products.

Achieved and Expected Results

Rover localization experiments using a FIDO rover, a helicopter-borne imaging system, and a simulated rover stereo imaging system were conducted in Silver Lake, CA in 1999 and 2000 (Arvidson and Squyres, 1999; Li et al., 2000; Ma et al., 2001). The developed bundle adjustment system was employed to process a set of rover images simulating the Navcam capability. The image network consists of 76 rover images acquired at 18 stations along a traverse of 850 m. The image network was formed from a selection of 217 tie points. After the bundle adjustment, accuracy of the rover locations is represented by the standard deviations of the rover positions (around 1 m). To check the external accuracy, we used 24 checkpoints that can be identified in the rover images and were measured by a differential GPS survey. Figure 6 shows the location
errors (differences between the adjusted positions and known “GPS” positions) at the checkpoints. We observed a general trend that the error increases as the distance from the landing center increases. The RMS errors at checkpoints were 1.435 m, 0.883 m and 0.752 m in the X, Y and Z directions respectively (Di et al., 2002a).

We have tested our methods and software with actual data from the Mars IMP (Imager for Mars Pathfinder) lander and with rover images from the 1997 Mars Pathfinder mission. After the bundle adjustment, image errors were reduced from tens of pixels to a sub-pixel level (Di et al., 2002b). This indicates that the bundle adjustment improved the exterior orientation (EO) parameters significantly. Seamless DEM and orthoimage were generated using the improved EO parameters. We selected 10 stereo pairs of IMP images and two stereo pairs of rover images to test rover localization accuracy. To link the IMP images 155 tie points were selected. Another 15 tie points were manually selected to link IMP and rover images and an additional 20 tie points were selected to link the rover images. The bundle adjustment results showed that the rover could be localized to an accuracy of about 2 percent of the distance from the lander with this lander and rover configuration.

LANDING SITE MAPPING PRODUCTS

The bundle adjustment results and the surface images can be used to generate landing site topographic mapping products with an improved accuracy. We will perform data processing during the mission operation period, and provide near real-time progressive landing site cartographic mapping products to support science and engineering operations.
Panoramic Maps: After the bundle adjustment, the panoramic Pancam/Navcam images are linked together by tie points in the image margins. Resampling processes will be performed in the overlapping areas of the margins to produce seamless panoramic images of the landing site. There will be one such panoramic map at each rover site where 360° panoramic images are taken.

Digital Terrain Model (DEM): A detailed digital terrain model of each MER landing site will be built based on the improved orientation parameters and available Pancam, Navcam and Hazcam images. Feature-based and area-based image matching techniques will be combined to achieve a high degree of reliability and automation in finding corresponding image features in different images. The least-squares matching technique is then applied to improve the matching precision to a subpixel level. For each grid point in the DTM, as long as the desired grid point appears in the images we will use as many images as possible (including Pancam, Navcam and Hazcam images) to determine the height of the grid point. The DTM can also be represented in a multi-resolution structure to match the variation of the quality and quantity of the images in different regions of the landing site. Such an improved terrain model should provide the best possible topographic information on the MER landing sites.

Orthophoto: Each MER landing site will have an orthophoto map that does not contain terrain relief distortions and that is measurable like a map. The landing site orthophotos will be produced using the improved EO parameters, the DTMs, and the Pancam, Navcam and Hazcam images. Since the high quality orientation parameters are provided by the bundle adjustment, we
expect very small discrepancies (subpixel) between image boundaries.

SUMMARY

The above introduced the technology and experiments for rover localization and landing site mapping in the 2003 MER mission. At first, Mars global and landing site local reference systems are elucidated. The initial rover position will be obtained through a triangulation using observations on orbital images and the very first set of surface images if common landmarks can be found in these images. This location can then be improved and verified by UHF two-way Doppler tracking and VLBI technology. As more ground images are acquired, landmarks seen in both ground images and orbital images can be used to update landing site locations in the global Mars body-fixed reference system. Onboard rover localization techniques will perform rover localization tasks in real-time. The application of visual odometry will improve localization by overcoming problems associated with wheel odometry such as slippage and low accuracy. Finally, the bundle adjustment based rover localization method will build an image network acquired by Pancam, Navcam and Hazcam cameras, as well as orbital images (such as Viking, MOC NA, and THEMIS images). The developed incremental and integrated bundle adjustment models will supply improved rover locations and image orientation parameters, which are critical for generation of high quality landing site topographic mapping products. Based on the field tests performed on Earth and Mars (MPF mission data), we expect that a 1 percent or better rover localization accuracy can be achieved during this mission. In addition, the bundle adjustment results will also enable us to produce high precision landing site topographic mapping products including seamless panoramic image mosaics, DTM, and orthophotos.
ACKNOWLEDGEMENTS

Support from the NASA Mars Technology Program and Mars Exploration Program is appreciated. R. E. Arvidson was supported by Contract 1223696 from Cornell University as Deputy PI for the Athena Payload on the 2003 Mars Exploration Rover Mission.
References

List of figures

Figure 1. Simulated image of MER 2003 rover

Figure 2. The test site for video odometry

Figure 3. The result of position estimation: comparisons of X, Y and Z coordinates computed by video odometry and ground truth

Figure 4. The results of attitude estimation: comparisons of three attitude angles computed by wheel odometry, video odometry and ground truth

Figure 5. Illustration of a rover traverse and the network with Pancam and Navcam images

Figure 6. Location errors at check points vs. distance from the landing center
List of tables

Table 1. MER rover sensors and key parameters
Figure 3

![Figure 3](image)

Figure 4.

![Figure 4](image)
Figure 6

[Graph showing location error (m) vs. distance of check points from the origin (m).]
Table 1

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Key Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast-Mounted</td>
<td></td>
</tr>
<tr>
<td>PanCam: Panoramic Camera</td>
<td>Twelve bands (0.4 to 1.0 µm) for stereoscopic imaging with 0.28 mrad IFOV; 16.8 deg by 16.8 deg FOV. Stereobaseline separation of 30 cm. External calibration target on rover deck.</td>
</tr>
<tr>
<td>Mini-TES: Thermal Emission Spectrometer</td>
<td>Emission spectra (5 to 29 µm, 10 cm-1 resolution) with 8 or 20 mrad FOV. Internal and external blackbody calibration targets.</td>
</tr>
<tr>
<td>IDD-Mounted In-Situ Package</td>
<td></td>
</tr>
<tr>
<td>APXS: Alpha Particle X-Ray Spectrometer</td>
<td>Cm alpha particle sources, and x-ray detectors, 3.8 cm FOV.</td>
</tr>
<tr>
<td>MB: Mössbauer Spectrometer</td>
<td>Fe spectrometer in backscatter mode; Co/Rh source and Si-PIN diode detectors; field of view approximately 1.5 cm².</td>
</tr>
<tr>
<td>MI: Microscopic Imager</td>
<td>30 µm/pixel monochromatic imager (1024x1024) with 6mm depth of field.</td>
</tr>
<tr>
<td>RAT: Rock Abrasion Tool</td>
<td>Tool capable of preparing 5 mm deep by 4.5 cm wide surface on rocks.</td>
</tr>
<tr>
<td>Magnets</td>
<td></td>
</tr>
<tr>
<td>Filter</td>
<td>Located front of rover within PanCam FOV. Weak magnet to cull suspended particles from atmosphere.</td>
</tr>
<tr>
<td>Capture</td>
<td>Located front of rover within PanCam FOV next to Capture Magnet. Strong magnet to cull suspended particles from atmosphere.</td>
</tr>
<tr>
<td>Sweep</td>
<td>Located next to PanCam calibration target. Intended to separate magnetic from non magnetic particles. To be examined by PanCam.</td>
</tr>
<tr>
<td>RAT</td>
<td>Four magnets of different strengths in RAT. To be examined by PanCam when IDD points RAT toward cameras.</td>
</tr>
<tr>
<td>Engineering Cameras</td>
<td></td>
</tr>
<tr>
<td>Navigation Cameras (Navcam)</td>
<td>Mast-mounted panchromatic stereoscopic imaging system with 0.77 mrad IFOV; 45 deg FOV, and 20 cm stereobaseline separation. For planning sequences.</td>
</tr>
<tr>
<td>Hazard Avoidance Cameras (Hazcam)</td>
<td>Front and rear-looking panchromatic stereoscopic imaging systems with 2 mrad IFOV; 123 deg FOV, 10 cm stereobaseline separation. For path planning and hazard avoidance during traverses.</td>
</tr>
</tbody>
</table>